3,801 research outputs found

    Ultrasonic emission method enables testing of adhesive bonds

    Get PDF
    Detection of acoustic energy emitted by adhesive bonds subjected to tensile stresses at frequencies above sixteen kilocycles per second is used as a method for determining bond strength. This method is used in measuring adhesive bond strengths on metal honeycomb core panels

    Dot patterns provide reproducible flaw areas for study of adhesive bonds

    Get PDF
    Photographic production of a small-dot pattern of known geometry on the surface of a substrate for controlled area degradation enables a study of adhesive bond strengths. These dot patterns may also be applied to force-limiting devices which must depend on the adhesive bonding strength between mating surfaces

    Nondestructive testing for evaluation of strength of bonded material

    Get PDF
    Nondestructive testing of adhesive bond strengt

    Synapse Dysfunctions in Multiple Sclerosis

    Get PDF
    Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system (CNS) affecting nearly three million humans worldwide. In MS, cells of an auto-reactive immune system invade the brain and cause neuroinflammation. Neuroinflammation triggers a complex, multi-faceted harmful process not only in the white matter but also in the grey matter of the brain. In the grey matter, neuroinflammation causes synapse dysfunctions. Synapse dysfunctions in MS occur early and independent from white matter demyelination and are likely correlates of cognitive and mental symptoms in MS. Disturbed synapse/glia interactions and elevated neuroinflammatory signals play a central role. Glutamatergic excitotoxic synapse damage emerges as a major mechanism. We review synapse/glia communication under normal conditions and summarize how this communication becomes malfunctional during neuroinflammation in MS. We discuss mechanisms of how disturbed glia/synapse communication can lead to synapse dysfunctions, signaling dysbalance, and neurodegeneration in MS

    On the local metric property in multivariate extremes

    Full text link
    Many multivariate data sets exhibit a form of positive dependence, which can either appear globally between all variables or only locally within particular subgroups. A popular notion of positive dependence that allows for localized positivity is positive association. In this work we introduce the notion of extremal positive association for multivariate extremes from threshold exceedances. Via a sufficient condition for extremal association, we show that extremal association generalizes extremal tree models. For H\"usler--Reiss distributions the sufficient condition permits a parametric description that we call the metric property. As the parameter of a H\"usler--Reiss distribution is a Euclidean distance matrix, the metric property relates to research in electrical network theory and Euclidean geometry. We show that the metric property can be localized with respect to a graph and study surrogate likelihood inference. This gives rise to a two-step estimation procedure for locally metrical H\"usler--Reiss graphical models. The second step allows for a simple dual problem, which is implemented via a gradient descent algorithm. Finally, we demonstrate our results on simulated and real data.Comment: 22 pages, 4 figure

    Kosmischer Staub im Nano-Labor : ein Blick in die Kinderstube des Sonnensystems

    Get PDF
    Staubwolken sind im Universum die Geburtsstätten neuer Sterne. Dort wiederholen sich Prozesse, die vor 4,56 Milliarden Jahren auch zur Entstehung unseres Sonnensystems geführt haben. Noch heute gibt es Zeugen aus dieser Zeit: Kometenstaub, Sternenstaub und interstellarer Staub. Die »Stardust-Mission« hat sie eingefangen, und Frankfurter Geowissenschaftler haben darin – dank modernster Labor-Analytik – erstaunliche Funde gemacht

    The alternative Medicago truncatula defense proteome of ROS - defective transgenic roots during early microbial infection

    Get PDF
    ROP-type GTPases of plants function as molecular switches within elementary signal transduction pathways such as the regulation of ROS synthesis via activation of NADPH oxidases (RBOH-respiratory burst oxidase homolog in plants). Previously, we reported that silencing of the Medicago truncatula GTPase MtROP9 led to reduced ROS production and suppressed induction of ROS-related enzymes in transgenic roots (MtROP9i) infected with pathogenic (Aphanomyces euteiches) and symbiotic microorganisms (Glomus intraradices, Sinorhizobium meliloti). While fungal infections were enhanced, S. meliloti infection was drastically impaired. In this study, we investigate the temporal proteome response of M. truncatula MtROP9i transgenic roots during the same microbial interactions under conditions of deprived potential to synthesize ROS. In comparison with control roots (Mtvector), we present a comprehensive proteomic analysis using sensitive MS protein identification. For four early infection time-points (1, 3, 5, 24 hpi), 733 spots were found to be different in abundance: 213 spots comprising 984 proteins (607 unique) were identified after S. meliloti infection, 230 spots comprising 796 proteins (580 unique) after G. intraradices infection, and 290 spots comprising 1240 proteins (828 unique) after A. euteiches infection. Data evaluation by GelMap in combination with a heatmap tool allowed recognition of key proteome changes during microbial interactions under conditions of hampered ROS synthesis. Overall, the number of induced proteins in MtROP9i was low as compared with controls, indicating a dual function of ROS in defense signaling as well as alternative response patterns activated during microbial infection. Qualitative analysis of induced proteins showed that enzymes linked to ROS production and scavenging were highly induced in control roots, while in MtROP9i the majority of proteins were involved in alternative defense pathways such as cell wall and protein degradation

    Vorwort

    Full text link

    Three-dimensional confocal µ-XANES on mineral inclusions in natural diamonds

    Get PDF

    Rabconnectin-3α/DMXL2 Is Locally Enriched at the Synaptic Ribbon of Rod Photoreceptor Synapses

    Get PDF
    Ribbon synapses reliably transmit synaptic signals over a broad signalling range. Rod photoreceptor ribbon synapses are capable of transmitting signals generated by the absorption of single photons. The high precision of ribbon synapses emphasizes the need for particularly efficient signalling mechanisms. Synaptic ribbons are presynaptic specializations of ribbon synapses and are anchored to the active zone. Synaptic ribbons bind many synaptic vesicles that are delivered to the active zone for continuous and faithful signalling. In the present study we demonstrate with independent antibodies at the light- and electron microscopic level that rabconnectin-3α (RC3α)—alternative name Dmx-like 2 (DMXL2)—is localized to the synaptic ribbons of rod photoreceptor synapses in the mouse retina. In the brain, RC3α-containing complexes are known to interact with important components of synaptic vesicles, including Rab3-activating/inactivating enzymes, priming proteins and the vesicular H+ -ATPase that acidifies the synaptic vesicle lumen to promote full neurotransmitter loading. The association of RC3α/DMXL2 with rod synaptic ribbons of the mouse retina could enable these structures to deliver only fully signalling-competent synaptic vesicles to the active zone thus contributing to reliable synaptic communication
    • …
    corecore